Solving problems with the astrolabe

The astrolabe can be used to

 solve many types of astronomical problem- The times of sunrise and sunset
- The time of day by the sun (local time)
- The positions of the stars at any time
- The time by the stars

The times of sunrise and sunset

Step 1

- On the back of the astrolabe, move the alidade (like the rule) to the date on the civil calendar scale.
- Read off the date in the Zodiac calendar on the outer scale

e.g. $18^{\text {th }}$ February $=$ $10^{\text {th }}$ Pisces

Step 2

This ring is the ecliptic circle (sun's pathway during a year)

- Turn to the front of the astrolabe and position the rule at the correct date on the Zodiac scale on the ecliptic circle on the rete
- This marks the position of the sun relative to the stars

Step 3

- Rotate this point (where the rule crosses the Zodiac scale) until it just crosses the eastern horizon line (left hand side) on the tympan underneath
- Read the time of sunrise on the outer scale

Horizon line
(Eastern side)

Step 4

Read time here

Western horizon line

- To find the time of sunset, rotate the same point until it just crosses the western horizon (right hand side)
- Read the time of sunset on the outer scale

The time of day by the sun

- The astrolabe can be used to estimate the time of day by the altitude (height) of the sun during the day
- The time will be local time (like a sundial) which will vary from place to place according to longitude

Step 1

- Hang the astrolabe vertically
- On the back of the astrolabe, line up the sights on the alidade with the sun by aligning the spot of light cast through the first hole with the second hole
- (REMEMBER: NEVER LOOK DIRECTLY AT THE SUN)

Ray of sunlight

Step 2

- Read the angle of altitude of the sun from the scale on the outer rim

e.g. 20 degrees

from the horizontal

Step 3

- Turn to the front of the astrolabe
- Find the nearest altitude line to the one you have measured on the tympan (estimate the position if there isn't a line for your precise angle)

20 degree altitude line

Step 4

- Find the date in the Zodiac calendar as before by using the scales on the back of the astrolabe
- Position the rule on the correct Zodiac date on the front to mark the position of the sun

Step 5

- Rotate this point (where the rule crosses the Zodiac scale) until it just crosses the altitude line that you have measured for the sun
- If it's morning, then choose the left hand side of the astrolabe. If it's afternoon, then choose the right hand side.

20 degree altitude line

Step 6

- Read the time from the outer scale

Problems

Try your hand at the following problems Good luck!

Determining the times of sunrise and sunset

- Determine the times of sunrise and sunset on the following days:
i) 25 January
ii) 12 December
iii) 12 June
- i) Ans: Sunrise 7.30am, sunset 4.30pm
- ii) Ans: Sunrise 8.15 am , sunset 3.45 pm
- iii) Ans: Sunrise 3.30am, sunset 8.30pm

Determine the time by the sun

- Estimate the solar time for the following:
i) 8 February, with the sun at 10°
ii) 3 September, with the sun at 30°
iii) 24 July, with the sun at 15°
- i) Ans: 8.15 am or 3.45 pm
- ii) Ans: 11.15am or 12.45pm
- iii) Ans: 6.00am or 6.00pm

Determining the altitude of the sun by the date and time

i) Calculate the altitude of the sun at 9.00 am on 31 December
ii) Calculate the maximum and minimum altitudes of the sun at midday over the course of a year (hint, on which dates would the sun be at their maximum and minimum positions

- i) Ans: 6° altitude
- ii) Ans: $\operatorname{Min}=14^{\circ}, \operatorname{Max}=62^{\circ}$

